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ABSTRACT:  

North Atlantic oceanic airspace accommodates 
more than 1000 flights daily, and is subjected to 
very strong winds. Flying wind-optimal trajectories 
yields time and fuel savings for each individual 
flight. However, when taken together, these 
trajectories induce a large amount of potential en-
route conflicts. This paper analyses the detected 
conflicts, figuring out conflict distribution in time 
and space. It further describes an optimization 
algorithm aimed at reducing the number of conflicts 
for a daily set of flights on strategic level. Several 
trajectory modification strategies are discussed, 
followed with simulation results. Finally, an 
algorithm improvement is presented aiming at 
better preserving the trajectory optimality. 

1. INTRODUCTION 

North Atlantic oceanic airspace (NAT) is the 
busiest oceanic airspace in the world that 
accommodates more than 1000 flights daily [1]. 
The flights crossing the NAT are subjected to very 
strong winds (Fig. 1) caused by the presence of 
the jet stream [2]. As a result, flight efficiency is 
greatly affected by these winds [3] and depends on 
the trajectory position in the wind field. Nowadays, 
aircraft rarely have the possibility to choose their 
optimal route, as they are restricted to follow 
predefined tracks called Organized Track System 
(OTS) [1]. However, with the upcoming 
development of new generation surveillance and 
broadcast technologies [4-6] leading to significant 
reduction in separation standards [7-10], flying 
flexible routes will become possible [11,12]. As a 
consequence, developing cost-optimal, and in 
particular, wind-optimal trajectories, is an important 
element of the aeronautical research. 

 
Figure 1. Example of jet stream wind field in NAT 

A large amount of work is devoted to aircraft 
trajectory optimization in the presence of winds, for 
example, some of the most recent ones [12-16]. 
The results of these simulations demonstrate 
significant benefits that each particular aircraft 
could expect when flying wind- or climate-optimal 
route, including cruising time and fuel savings [17], 
and emissions and contrails reductions [18]. 
Nevertheless, when considered as a system, these 
sets of wind-optimal trajectories induce quite a 
large number of potential conflicts between flights 
[19], and the NAT becomes extremely congested. 
One reason for such a flight concentration is the 
nature of NAT flights: they mainly contribute to two 
opposite flows, eastbound and westbound, where 
the departure times for the flights in each flow are 
very close, because of passenger demands and 
time zone differences [1]. The other reason is the 
jet stream nature of wind fields: as a result the 
eastbound flights would try to follow the jet in order 
to benefit from strong tail winds, while the 
westbound flights would avoid the jet [15]. In order 
to enable safe flight progress, the airspace 
congestion should be reduced and the potential 
conflicts resolved. 

Conflict detection and resolution is a complex 
problem that has been addressed in many different 
ways in literature [20]. The majority of studies are 
devoted to tactical conflict resolution (up to 30 
minutes before a conflict occurs), where the most 
common maneuvers to avoid collisions are 
heading or speed changes [21-23]. Here, 
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deterministic optimization methods could be 
applied [24] as well as stochastic ones [25], where 
the optimization decision variables are authorized 
trajectory modification maneuvers. Algorithms 
devoted to strategic conflict resolution (performed 
before the aircraft take off) tend to be more 
computationally exhaustive, since they treat much 
greater number of aircraft at the same time [26]. All 
the works mentioned above address conflict 
resolution problem without considering winds. 

The aim of the present research work is to 
combine the two important issues stated above, 
i.e. trajectory optimality in wind fields and conflict-
free flight progress. We are interested in producing 
a wind-optimal conflict-free ensemble of aircraft 
trajectories for a given set of NAT flights on 
strategic level of trajectory planning (for a 24-hours 
time period). Several previous studies have 
already addressed such kind of a problem. In the 
approximate solution approach from [27], a wind-
optimal trajectory for each aircraft is computed 
iteratively using aircraft dynamics in winds, and 
then it is modified in real time (by changing aircraft 
heading) in order to avoid all conflicts with the 
previously computed trajectories. In [28] all wind 
optimal trajectories are pre-computed beforehand, 
and the conflict resolution problem for these 
trajectories is formulated as a job-shop scheduling 
problem, with flight departure delays being the only 
optimization variables. In [29] first the congestion 
areas induced by pre-computed wind-optimal 
trajectories are identified, and then an iterative 
process based on Simulated Annealing is applied, 
where on each iteration step one of the trajectories 
is recalculated in order to avoid these congested 
areas. All the described methods have their limits 
of applicability. 

In the present work, we develop an optimization 
method, based on strategic conflict resolution from 
[26], taking into account wind fields and trajectory 
optimality. Some preliminary results based on this 
method can be found in [19]. The paper is 
organized as follows. In Section 2, we describe our 
method of conflict detection and reveal some 
features on the nature of conflicts in NAT. In 
Section 3, the conflict resolution algorithm is 
presented, followed by the simulation results in 
Section 4. Finally, Section 5 describes how the 
algorithm can be extended in order to keep 
trajectories closer to wind-optimal ones. Section 6 
summarized the main contributions of the paper. 

2. CONFLICT DETECTION AND DISTRIBUTION 

In order to develop an efficient conflict resolution 
method, it is useful to understand the nature and 
the structure of potential conflicts. This Section first 
describes the NAT flight data for wind-optimal 
trajectories that were used in our simulations. Then 
a conflict detection methodology is presented. 

Finally, simulation results demonstrating conflict 
distribution in NAT are revealed. 

2.1. Input data: wind-optimal trajectories in NAT 

To perform the simulation of flight progress in NAT, 
we are given the wind field data, where u and v 
wind components are recorded with a defined step 
in a 3-dimention grid covering the world airspace. 
Each such grid corresponds to a particular hour of 
the day, with a 6-hours time step.  

We perform our simulations for 31 days in July 
2012. For each of these days, a set of wind-optimal 
trajectories is independently generated based on 
the equations of aircraft motion in wind [17]. For 
each aircraft, a resulting wind-optimal trajectory is 
given as a sequence of geographical points 
recorded each minute of flight starting from the 
departure airport and ending at the arrival airport. 
Thus, it can be considered as a sequence of 4D-
points (latitude, longitude, altitude, time).  

For simplification, each flight is supposed to cruise 
on a constant flight level at a constant speed. We 
are interested in cruising flight phase only, thus 
climbing and descending at origin and destination 
airports are not taken into account. Moreover, as 
our point of interest is NAT in particular, we focus 
on detecting conflicts in NAT only. 

For each day, i.e. a 24-hours period, there are 
flights departing on this day, and arriving on the 
next day. Such flights should be taken into account 
when detecting conflicts not only for the current, 
but for the next day as well. For July 1st the total 
number of flights cruising on this day is incomplete, 
as we have no information about those flights 
departed on June 30th. Thus, we exclude the 
simulation results for July 1st from our statistics 
study, presented in the next sections. 

2.2. Conflict detection methodology 

By a classical definition, a conflict is a violation of 
established separation standards. Separation 
norms are typically defined for vertical, horizontal 
and, in some cases, temporal separation. In our 
case, vertical separation between aircraft on 
different flight levels, traditionally equal to 1000 
feet, is maintained automatically. For horizontal 
separation, we apply a reduced separation norm, 
equal to 30NM. For comparison, a standard 
separation currently established in oceanic 
airspaces not covered by radar surveillance is 
60NM. Moreover, nowadays aircraft crossing NAT 
within OTS are obliged to maintain temporal in-trail 
separation equal to 10 minutes. In our study, we 
also consider temporal separation, but reduced to 
3 minutes. Note, that a commercial aircraft cruising 
at the highest speed in 3 minutes would cover a 
distance equal to about 30NM. 
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To detect conflicts according to the given 
separation standards, we apply point-to-point 
detection method based on the 4-dimentional grid 
from [26]. Such a grid is presented in Fig. 2, where 
the dimensions of the cells (Δlat, Δlon, Δv, Δt) are 
defined in correspondence with separation 
standards. Each 4D-trajectory point is placed in the 
appropriate cell depending on its coordinates, and 
then for each such point the separation between 
this point and all the points in the same and 
neighbor cells is verified. If for any point horizontal 
or temporal separation is violated, then a point-to-
point conflict is detected. A pair of trajectories is in 
conflict, if any pair of their points is in conflict. Note, 
that (Δlat, Δlon, Δv, Δt) as well as the distance 
between the consecutive trajectory points should 
be chosen small enough in order not to miss 
potential conflicts occurring between points (see 
[30, 31] for more detail). In our case, we set Δlat 
and Δlon equal to 30NM, Δv equal to 1000 feet, and 
Δt equal to 15 seconds.  

 
Figure 2. 4-dimentional grid for conflict detection 

2.3. Initial number of conflicts 

Using the methodology described above, we first 
focus on detecting the number of conflicts induced 
by initially generated wind-optimal trajectories. 
Below, the results of simulations for July 29th are 
presented. Conflict distribution for this day seems 
to be the worst among the 30 days, i.e. the most 
difficult for resolution. Fig. 3 demonstrates conflicts 
detected for a 24-hours time period on this day, 
where westbound trajectories are displayed in 
black, eastbound trajectories in blue, and conflict 
points in red (note, that only conflicts in NAT are 
taken into account). One can easily see that the 
opposite-direction flights mainly concentrate within 
two major flows, and conflicts have extremely high 
density within these flows. 

 
Figure 3. Initial conflict for wind-optimal trajectories 

In Fig. 4, flight and conflict distribution over the 24 
hours (with 30-minutes time step) is represented. 

Here, when speaking about the number of 
conflicts, we mean the number of trajectory pairs 
involved in conflicts. As expected, conflict 
distribution reflects the flight distribution. Two 
peaks for the number of flights can be clearly 
distinguished. The first peak, around 0400 UTC 
(Coordinated Universal Time format, displaying 
GMT time, where first two digits stand for hours 
and last two digit stand for minutes), is related to 
the eastbound flow of flights departing North 
America in the evening. The second one around 
1330 UTC is related to the westbound flow 
departing Europe in the morning. The peaks for the 
number of conflicts reflect the peaks for number of 
flights. While for July 29th the peak of conflicts 
corresponding to eastbound traffic is much more 
clearly distinguished, that is not always the case 
for other days. 

 
Figure 4. Flight and conflict distribution over 24 

hours 

Fig. 5 displays five Oceanic Control Areas (OCAs): 
Reykjavik, Shanwick, Gander, New York Oceanic 
and Santa Maria Oceanic, and Fig. 6 shows 
conflict distribution for these OCAs. As it can be 
seen, the majority of conflicts occur in Shanwick 
and Gander OCAs, while their number for other 
OCAs is almost negligible. From Fig. 6 it can be 
also seen how the peaks of conflicts migrate from 
Gander to Shanwick OCA between 0100 UTC and 
0400 UTC, and then for eastbound traffic, and 
back from Shanwick OCA to Gander OCA between 
1100 UTC and 1400 UTC for westbound traffic. 

 
Figure 5. North Atlantic Oceanic Control Areas 

These conflict distributions remain similar for other 
days being studied, while the number of conflicts 
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can largely vary from one day to another. Fig. 7 
displays the number of flights and number of 
conflicts over 30 days in July 2012. The average 
number of daily flights is about 1130. The number 
of initially detected conflicts can be as large as 780 
(for July 29th), with an average value being 533, 
and a minimal value being 349 (for July 23rd). The 
obtained results thus show, that the wind-optimal 
trajectories cannot be just flown as they are, and 
should be modified in order to avoid conflicts. 

 
Figure 6. Conflict distribution over NAT OCAs 

 
Figure 7. Number of flight and number of conflicts 

conflict over 30 days  

2.4. Clusters of conflicts 

In Section 2.3, the total number of conflicts for the 
daily sets of flights was investigated. Nevertheless, 
not all trajectories, marked in red in Fig. 3, are 
interacting with one another. Thus, an interesting 
point is to distinguish the conflict clusters, i.e. the 
subsets of trajectories, where each trajectory 
induce conflicts with at least one trajectory in the 
subset, and induce no conflict with any trajectory 
not belonging to the subset. Clusters identification 
could help to understand the nature and structure 
of the conflicts, and to propose more efficient 
strategies of conflict resolution.  

Fig. 8 displays the total number of identified 
clusters for 30 days of July, as well as size of the 
maximal cluster, i.e. the maximal number of 
trajectories in a cluster. On average, there are 
about 150 different clusters daily. The majority of 
these clusters (about 73%) are of the size 2 or 3. 
Theoretically, conflict resolution inside such 
clusters should be easy. For each day, there are 
on average 6 clusters with the size equal or more 
than 10 (4% from the total cluster number), with 
maximal number of such clusters equal to 12. The 
number of trajectories in a maximal cluster is 25 on 
average, and reaches 56 in the worst case.  

 
Figure 8. Number of clusters and number of 
trajectories in the largest cluster for 30 days 

For July 29th, 154 different conflict clusters are 
identified, among which 104 are of the size 2 or 3. 
Eight clusters have the size more than 10, two of 
which are displayed in Fig. 9. The upper one 
involves 12 flights (conflict points displayed in 
magenta) from the westbound flight flow, avoiding 
jet. The lower cluster (conflict points shown in red) 
is the largest cluster for this day, consisting of 42 
trajectories from the eastbound flow exploiting the 
jet wind. Conflict resolution for such a number of 
tightly interacting trajectories is much more 
complicated. However, not all of these conflicts 
occur at the same time moment.  

 
Figure 9. Two largest cluster of trajectories 

Fig. 10 displays the distribution of the number of 
clusters and the largest cluster sizes over 24-hours 
time period for July 29th. This distribution reflects 
exactly the distribution of conflicts shown in Fig. 4. 
Note, that July 29th was found to be one of the 
worst days in terms of cluster formation. Fig. 11 
demonstrates how the largest cluster propagates in 
time for a short time period from 0200 UTC to 
0400 UTC. It is clearly seen how conflict positions 
move while the aircraft fly their eastbound routes. 

 
Figure 10. Number of clusters and number of 

trajectories in the largest cluster over 24 hours 

From the conflict features we conclude that the 
highest congestion and the most difficult for conflict 
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resolution situations arise from clusters of 
trajectories that are very close to one another in 
space (parallel and/or identical) and time, and thus, 
are highly interrelated. Thus, one could think of a 
special method to resolve such types of conflicts. 
The efficient resolution in this case should be 
different from the resolution of a conflict between 
only two trajectories intersecting at a single point. 
Moreover, as shown in Fig. 11, the interactions 
inside a cluster tend to be time-dependent. Thus, a 
conflict resolution method could be time-dependent 
as well, performing consecutive resolution for a 
short time-period, and then shifting to the next time 
period. However, we keep these ideas as 
perspectives for future research. Section 3 
describes the conflict resolution methodology 
applied in this study. 

 
Figure 11. Largest cluster evaluation with time 

3. CONFLICT RESOLUTION: METHODOLOGY 

In order to resolve conflicts one need to modify 
initial wind-optimal trajectories. We would like to 
assure nevertheless that the resulting trajectories 
remain as close to the optimal ones as possible. In 
this Section we first describe the maneuvers 
applied for trajectory modification. Then we 
formulate a conflict resolution problem as an 
optimization problem with these maneuvers being 
the decision variable. Finally, we briefly describe 
the algorithm applied for the problem resolution. 

3.1. Trajectory modification maneuvers 

In this study, we’ve selected two maneuvers to 
modify a given flight: to change its departure time 
and to change the geometrical shape of its 
trajectory. The procedure of departure time 
modification is very simple: it suffices to delay an 
aircraft f at each 4D-point of its trajectory by a 
given fixed time delay, df. The advantage of this 
method is that the trajectory optimality is not 
affected: strategic trajectory planning is made with 

the assumption of constant wind fields. Too large 
delays are not desired by airlines, and the delays 
of several seconds have no sense in practice. 
Thus, we define df as a discrete variable taking 
integer values from 0 to 30 minutes maximum. 

The procedure of trajectory shape modification is 
more complicated. We perform it in two steps: first 
we change the geographical position of the 
trajectory points (thus, the first two coordinates, 
latitude and longitude, of a 4D-point are modified), 
and next we recalculate the times when the aircraft 
passes these new points based on aircraft air 
speed (constant) and wind fields (i.e. the fourth 
coordinate, time, of a 4D-point is modified). To 
modify the geometrical shape of a trajectory, we 
exploit a bijective transformation between an 
arbitrary curve on a sphere and a curve on the xy-
plane (Fig. 12).  

 
Figure 12. Trajectory shape modification approach 

To do so, first we project each trajectory point on a 
spherical Earth, qi (blue curve in Fig. 12) to a 
straight-line segment [0, 1] of x-axis, using the 
proportion of trajectory length up to this point to the 
total trajectory length, L, and obtain xi values. Next, 
we modify the straight-line segment using a 
smooth function, y=ξ(x), respecting boundary 
conditions, and obtain yi values (bottom image in 
Fig. 12). Finally, we apply the bijection in another 
sense and shift each trajectory point qi along a 
perpendicular to the great circle, joining the origin 
and destination point (black line in Fig. 12), on a 
distance proportional to yi values and L, and obtain 
new points, q′I (upper image in Fig. 12).  

We decided to use a symmetric cosine-like 
function given by Eq. 1 that guarantees smooth 
trajectory modification: 

                     ξ x =bfY cos 2πx-π +1                 (1) 

The function curvature can be controlled 
independently for each flight f using a single 
variable, bf. We choose variables bf to be real 
numbers from the segment [-1,1]. The actual 
trajectory deviation rate is then scaled by 
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multiplying these variables by a predefined 
maximal deviation value, Y. This value is set so 
that to assure that the maximal resulting curve 
length on xy-plane for any bf does not exceed 1 by 
more than Rmax percent, where Rmax is a user-
defined parameter. 

3.2. Optimization problem formulation 

We address the conflict resolution problem as an 
optimization problem. To do so, first we introduce 
the input data obtained from the given set of N 
wind-optimal trajectories. For each flight f from the 
set (f=1,...,N) we have: 

• FLf – aircraft flight level (constant); 
• vf – aircraft speed (constant); 
• qf

i=(λf
i, φf

i, af, tfi) – a sequence of 4D route 
points with coordinates (latitude, longitude, 
altitude, time). 

Our decision variables originate from the 
authorized trajectory modification maneuvers, and 
are denoted for each flight f=1,…,N as described in 
Section 3.1: 

• df∈ 0,1,…,𝑁!"#!   – departure time delay; 
• bf∈ -1,1  – a variable, controlling the rate 

of trajectory deviation from the initial one. 

To simplify the exposition, we gather all the 
decision variables in a single vector, z: 

•   z = d1,b1,…,dN,bN   . 

In the current formulation, the only constraints of 
the problem are the boundary constraints on the 
decision variables. The objective function is given 
by the total number of point-to-point conflicts 
induced by the set of modified trajectories 
corresponding to the variables z. We denote this 
function as Ct(z). On doing so we obtain an 
optimization problem stated in Eq. 2: 

minzCt z ,                                    (2) 
                         s.t.   df∈ 0,1,…,𝑁!"#! , 
                                 bf∈ -1,1 , f=1,…,N. 

The objective function, Ct(z), cannot be explicitly 
represented in terms of decision variables, (df, bf). 
The value of this function for each instantiation of 
the decision variables is to be evaluated in the 
simulations (as described in Section 2.2). This 
problem is therefore a difficult high-dimensional 
mixed-integer black box (derivative-free) 
optimization problem. Thus, to resolve it we have 
chosen to use a stochastic algorithm.  

3.3. Optimization algorithm 

In the current work we implement a stochastic 
metaheuristic approach developed in [30] and 
extend it to the case of oceanic flights. This 
approach is based on the Simulated Annealing 

algorithm. Simulated Annealing is a metaheuristic 
arising from the thermodynamics theory that 
imitates the annealing of the metal, involving 
heating and iterative process of controlled cooling. 
The classical Simulated Annealing scheme can be 
found in literature [32, 33]. Below one step of the 
iterative cooling process, implemented in our 
algorithm is described: 

• Evaluate the current solution, z: calculate 
the number of induced conflicts, Ct(z). 

• Generate a neighbor solution z′: 
− Choose one flight, f (for example one 

of the most conflicted); 
− Randomly modify its trajectory (shape, 

bf, or departure time, df); 
− Randomly modify all trajectories 

inducing conflicts with f. 
• Reevaluate the new trajectory set, Ct(z′).  
• Accept or reject this solution, with a 

probability p z→z',T    given by the 
Simulated Annealing scheme, where T is 
the current temperature during cooling 
process:  

p z→z',T =
1, if Ct z' <Ct z

exp Ct z -Ct z'
T

, if Ct z' ≥Ct z
    (3) 

The iterative process stops when a conflict-free 
solution (Ct(z′)=0) is found, or when the maximal 
iteration number is achieved. The algorithm then 
yields the best solution, in terms of the number of 
aircraft pairs in conflict. 

4. CONFLICT RESOLUTION: RESULTS 

This section presents the results of conflict 
resolution. Several trajectory modification 
strategies were investigated: 

• Modification of departure time only; 
• Modification of trajectory shape only; 
• Simultaneous modification of departure 

time and trajectory shape for NAT part of a 
trajectory; 

• Simultaneous modification of departure 
time and trajectory shape for the complete 
trajectory from origin to destination. 

Below, the comparison of the proposed strategies 
is presented. 

4.1. Modification of trajectories within NAT 

As our area of interest is NAT airspace, first we 
investigate the possibility to resolve conflicts by 
modifying trajectories within NAT only. The main 
criterion of the conflict resolution algorithm 
efficiency is the number of conflicts remaining after 
resolution. Fig. 13 displays the initial number of 
conflict for 30 days of July 2012, as well as the 
number of remaining conflicts after the resolution is 
accomplished. Here, T stands for departure time 
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modification, S stands for trajectory shape 
modification, and T+S stands for simultaneous 
time and shape modification. Fig. 14 displays the 
percent of reduced conflicts for each of the 
strategies.  

 
Figure 13. Number of initial conflicts and conflicts 

after resolution with different strategies 

 
Figure 14. Percent of resolved conflicts for different 

strategies 

As mentioned in Section 3.1, time modification only 
(T) is a good strategy, as it does not affect 
trajectory optimality. However, as can be seen 
from Fig. 12 and 13, it is not very efficient for 
conflict elimination. On average, only about 70% of 
the initial number of conflicts are resolved. Shape 
modification (S) gives even worthier results, with 
the average rate of conflict reduction equal to 50%. 
The best solution is yielded when time and shape 
modifications are applied in ensemble (T+S). For 
this strategy, there are two days, July 17th and 26th 
when all conflicts are completely eliminated. For all 
other days, except July 29th, less than 100 conflicts 
remain after resolution. On average, about 94% of 
initial conflicts are resolved for the 30 days, which 
is a very good result.  

Figs. 15-17 visualize the remaining conflicts for 
July 29th, for each of the strategies, T, S and T+S 
respectively. Comparing to Fig. 3 their number is 
significantly reduced. However, as it can be seen 
from Fig. 15, modifying departure time is not 
sufficient for safely separating the aircraft in the 
major conflict clusters of eastbound flights (Figs. 9, 
11): there are just much more aircraft in these 
clusters than can be allowed in the airspace with 
defined time-separation standards. In the same 
way, modifying only the shape within NAT is not 
sufficient neither, as trajectory points located near 
NAT boundaries (see Fig. 16) are not shifted 
enough to become separated. Combining both 

strategists yields much better results. However, as 
shown in Fig. 17, the remaining conflicts are still 
located within the major conflict clusters and near 
NAT boundaries. Thus, we come to the conclusion 
that trajectory modification within NAT only is not 
very efficient. 

 
Figure 15. Remaining conflict when only time 

modification (T) is applied for resolution 

 
Figure 16. Remaining conflict when only shape 

modification (S) is applied for resolution 

 
Figure 17. Remaining conflict with both time and 
shape modifications (T+S) applied for resolution 

4.2. Modification of complete trajectories 

In the next step of our research we propose to 
modify the shape of a complete trajectory, from its 
origin to destination. We will refer to this strategy 
as T+Sc. The results are very encouraging: by 
adjusting the shape modification rate, Rmax (a user-
defined parameter, standing for the maximal 
allowed curve length increase in percent, see 
Section 3.1) we manage to eliminate all conflicts 
for all 30 days of July 2012. Fig. 18 shows the 
resulting trajectories for July 29th (simulations 
performed with Rmax=2%). One can see that the 
traffic flows are much more large for these 
trajectories than for initial ones (Fig. 3). 
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Figure 18. Resulting trajectories when time and 

shape modifications are applied to complete 
trajectories (T+Sc)  

In order to obtain the best results, we investigate 
how the conflict resolution depends on trajectory 
shape modification rate, Rmax. Tab. 1 presents 
some statistical results of simulations with different 
values of Rmax. From Tab. 1 it can be seen, that the 
higher the modification rate is, the easier it is to 
resolve the conflicts: conflict-free solutions are 
obtained with higher probability, and faster. On the 
other hand, increase of the value of Rmax leads to 
significant increase of the length for modified 
trajectories, and even more important increase of 
the cruising time for affected flights. Thus, the 
solutions obtained with high Rmax are just not 
acceptable from an operational point of view. We 
assume that the most reasonable values for Rmax 
are about 1-2%, which permit to resolve almost all 
conflicts and not to deviate trajectories too much. 

Table 1. Comparison of conflict resolution results 
with different trajectory modification rates.  

Rmax, % 0.5 1 2 3 5 
Number of days 
with remaining 
conflicts 

8 2 0 1 0 

Average number 
of remaining 
conflicts per day 

7 8 0 1 0 

Average number 
of executed 
iterations when 
conflicts resolved 

8.6 6.3 5.2 4.4 4.1 

Average trajectory 
length increase, % 

0.07 0.15 0.28 0.45 0.79 

Average cruising 
time increase, % 

0.32 0.55 0.96 1.33 1.99 

Average number 
of modified 
trajectories 

37.6 36.7 35.2 35.2 34.8 

Maximal trajectory 
length increase, % 

2.0 2.7 4.0 6.0 7.7 

Maximal cruising 
time increase, % 

4.6 5.9 14.1 10.3 16.1 

Figs.	  19-21 present the results of comparison of 
modification strategies T+S and T+Sc in terms of 
trajectory length and cruising time increase, and 
departure delays assigned (Fig. 21 includes T-
strategy in comparison in addition). For T+S 
simulations, Rmax=10% was used (note, that this 

modification rate is applied just for the NAT portion 
of a trajectory), while for T+Sc simulations, we 
selected Rmax=2%. T+Sc strategy definitively 
induces much less trajectory length increase. 
Time-increase deference for the two strategies is 
not as evident. However, T+Sc strategy tends to 
give better results for most of the days either. 
Moreover, it also yields less departure time delays. 
And that is in addition to total conflict elimination 
achieved by resolution with T+Sc. Thus, we come 
to the conclusion that the best resolution method 
involves complete trajectory modification combined 
with departure time modification. 

 
Figure 19. Average trajectory length and cruising 

time increase for two modification strategies 

 
Figure 20. Maximal trajectory length and cruising 

time increase for two modification strategies 

 
Figure 21. Average departure time delays for three 

modification strategies 

5. TRAJECTORY OPTIMIZATION 

In Section 4, we focused on conflict resolution only, 
and by modifying the departure time and trajectory 
shape, we managed to resolve all potential conflict 
for wind-optimal flights. However, on doing so, the 
flights are moved away from their desired routes. 
As a consequence, their cost increases. In this 
Section, we propose to extend the conflict 
resolution algorithm in order to make trajectory 
deviations as small as possible. 
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5.1. Optimization problem reformulation 

In order to control trajectory deviations, we 
penalize these deviations, i.e. departure time and 
trajectory shape modifications, and include these 
penalties into the objective function from Eq. 2 with 
adjusted weighting coefficients. Thus, in addition to 
the total number of conflicts, Ct(z), for each 
instantiation of decision variables, z, we compute 
the following values: 

• ΔTc(z) – total cruising time increase 
evaluated over N trajectories; and 

• ΔTd(z) – total departure time delays 
assigned to N trajectories. 

The resulting objective function is given by Eq. 4: 

                                              minzCt z +αΔTc z +βΔTd(z),           (4) 

where α and β are user-defined weighting 
coefficients that permit to control the trade-offs 
between the values being optimized.  

5.2. Simulation results 

Below we perform the results for two test cases, 
and we compare these results with simple conflict 
resolution described in Section 4.2. In the first 
case, further referred as T+Sc+C, we would like to 
minimize cruising time increase only, and thus, we 
set coefficient β equal to 0. In the second case, 
referred as T+Sc+C+D, we consider both cruising 
time increase, and departure delay, with α=1/600, 
and β=0.2α. Figs. 22-26 demonstrate the results of 
comparison. 

 
Figure 22. Number of remaining conflicts for three 

optimization strategies 

 
Figure 23. Average cruising time increase for three 

optimization strategies 

First, one can notice, that when trajectory 
deviations are taken into account, there appear 
several days, for which not all conflicts are 
eliminated (Fig. 22), even if the number of 
remaining conflicts is really small. However, we 

recall that we are performing strategic conflict 
resolution, and thus, any remaining conflict could 
be further resolved during tactical phase. 
Moreover, in reality flights would never fly exactly 
the given routes, because of different hazardous 
conditions, including changing meteorological 
conditions. Thus, the predicted conflicts might 
never happen in the reality, while new conflicts 
could reappear. Thus, our goal is not to eliminate 
completely all the conflicts, but to separate the 
trajectories sufficiently in order to reduce the 
airspace congestion in general. Note in addition, 
that even the actual flight routes issued to the real 
flights in the strategic planning phase when 
evaluated as an ensemble induce quite a large 
number of conflicts. These conflicts however would 
never happen in the reality and are typically 
addressed in the tactical phase. 

 
Figure 24. Average departure time delay for three 

optimization strategies 

 
Figure 25. Average percent of flights with modified 

trajectories for three optimization strategies 

 
Figure 26. Average percent of delayed flights for 

three optimization strategies 

On the other hand, one can see from Fig. 23, that 
when penalties on trajectory shape modification 
are included in the optimization (blue crosses), the 
average cruising time increase is significantly 
smaller than when these modifications are ignored 
(orange circles). This is a major argument to use 
such an extended conflict resolution algorithm. 
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When penalties on departure delays are in addition 
included in the optimization (T+Sc+C+D case), 
these departure delays are significantly decreased, 
by more than two comparing to T+Sc strategy, and 
by about 3 comparing to T+Sc+C strategy 
(Fig. 24). At the same time, the cruising time (violet 
diamonds in Fig. 23) is not increased a lot 
comparing to the results of T+Sc+C simulation 
(blue crosses). Thus, considering both deviation 
maneuvers seems to be the most reasonable way 
to tackle the exposed problem. 

6. CONCLUSION 

The current paper presents a comprehensive study 
on the nature and the structure of conflict induced 
by a set of wind-optimal trajectories in North 
Atlantic oceanic airspace. We discovered how 
conflicts are distributed in space and time, and we 
revealed that the most difficult conflict resolution 
situations are due to intensive conflict 
clusterization within the main traffic flows.  

We then addressed conflict resolution problem in 
order to reduce the congestion in NAT. We 
formulated this problem as an optimization 
problem, introduced acceptable ways of wind-
optimal trajectories modification, and developed a 
stochastic optimization algorithm, capable to 
manage different strategies of conflict resolution. 
Moreover, an extended version of the algorithm 
permits not only to reduce the number of conflicts, 
but also to keep the resulting trajectories as close 
to wind-optimal ones as possible. 

We recall that our goal was general conflict 
reduction and not complete conflict elimination, as 
the simulations were performed for the strategic 
trajectory planning that is done such in advance, 
that the conditions used in the simulations (in 
particular, the winds) would differ from actual 
conditions experienced by aircraft en-route. As a 
result, new conflicts may reappear in the issued 
conflict-free trajectories. These conflicts then are to 
be addressed during tactical conflict resolution. 
That is what currently happening in the reality, as 
even the actual routes issued to aircraft induce 
quite a large number of conflicts. 

From the obtained results, we conclude, that the 
best way to reduce the number of conflicts is to 
simultaneously modify departure time and 
geometrical shape of the trajectories, while 
applying these maneuvers separately does not 
allow sufficient flexibility to avoid all the conflicts. 
Furthermore, considering trajectory modifications 
while performing conflict resolution permits to 
significantly reduce these modifications without 
affecting the efficiency of the resolution greatly. 

One of the possible ways to extend the presented 
work is to look deeply into conflict clusters 
structure and try to elaborate different resolution 

strategies for different cluster types, involving Data 
Mining tools. This method could give smarter 
trajectory modifications and more acceptable 
solutions.  

Another idea is to distribute conflict resolution in 
time, by resolving conflicts just inside short-period 
overlapping time windows consecutively. In this 
case, the resolution on each step will involve 
smaller number of trajectories and thus, should be 
simpler. In addition to this, trajectories would be 
perturbed for smaller portions of their length. 

Finally, we could address the main drawback of 
strategic trajectory planning, i.e. its robustness 
regarding changing flight conditions, in particular, 
meteorological conditions. Taking into account 
uncertainties in wind prediction while performing 
conflict resolution could increase significantly the 
robustness of the yielded solutions, and that is a 
good challenge for future work.  
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